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Abstract
We begin by deriving a general useful theoretical relationship between the
plane–particle interaction forces in solution, and the corresponding plane–plane
interaction energies. This is the main result of the paper. It provides a simple
tool to obtain closed-form particle–plane forces from knowledge of plane–plane
interaction energies. To illustrate the simplicity of use of this general formalism,
we apply it to find particle–plane interactions within the Derjaguin–Landau–
Verwey–Overbeek (DLVO) framework. Specifically, we obtain analytical
expressions for forces and interaction energies in the van der Waals and the
electrical double layer cases. The van der Waals expression is calculated here
for benchmarking purposes and is compared with well-established expressions
from Hamaker theory. The interactions for the electric double layer situation are
computed in two cases: the linear superposition approximation and the constant
surface potential. In both cases, our closed-form expressions were compared
with existent numerical results. We also use the main result of this paper
to generate an analytical force-separation expression based on atomic force
microscope experiments for a tip and surface immersed in an aqueous solution,
and compare it with the corresponding numerical results. Finally, based on
our main result, we generalize the Derjaguin approximation by calculating the
next order of approximation, thus obtaining a formula valuable for colloidal
interaction estimations.

1. Introduction

A priori knowledge of the parametric functional form of force-separation curves in atomic
force microscopy (AFM) is necessary for writing reconstruction algorithms that predict the
morphology and chemical activity of the sample under study. In vacuum, the tip and the sample
can be modelled as a collection of atoms. The total tip–sample force can thus be evaluated
from the appropriate atom–atom forces. These elemental forces have been modelled via Morse
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and 6–12 pair potentials. More sophisticated, quantum N-body approaches have also been
used in the past [1, 2]. Nevertheless, a large number of applications occur for tip–sample
interactions in aqueous solutions where the elemental atom–atom interactions are screened
by ions at the surfaces. In addition, beyond applications in AFM, knowledge of the plane–
particle interaction is significant per se in particle deposition [3], antireflection coating [4],
data storage [5] and membrane separation processes [6]. Indeed, since the inception of colloid
probe microscopy [7, 8], sphere–plane force measurements have become routine in aqueous
solution studies.

Within the Derjaguin–Landau–Verwey–Overbeek (DLVO) theory, the generation of
closed-form expressions for these colloidal interactions has been hampered by the fact
that analytical solutions to the Poisson–Boltzmann equation (PBE) are restricted to planar
geometries. Numerical solutions for other geometries do exist, but it is always desirable to
have analytical expressions.

To bypass the seemingly insurmountably problem of obtaining analytical solutions to
PBE curved geometries, a major effort has been placed on constructing a set of reasonable
assumptions that, when taken together with the planar solution to the PBE, generate good
expressions for the interactions between colloidal particles.

The most celebrated effort in that direction, the Derjaguin approximation, provides an
explicit recipe for the calculation of the interaction energy between two spheroidal particles,
from the knowledge of the interaction energy between two planes. A detailed study of the
limitations of this approach can be found elsewhere [9]; however, its major restriction is that the
radii of curvature of the particles, at closest approach, must be much larger than the interaction
length. This condition is not satisfied in many cases of interest. For example, typical interaction
lengths in liquids are 1–10 nm—similar to the radius of curvature of sharp AFM tips. Thus,
the Derjaguin approximation is expected not to provide a good tool for the analysis of AFM
tip–sample forces.

A more recent approach, surface element integration (SEI), has been used to obtain
colloidal interaction energies [10]. In particular, this method has been shown to be very robust
when restricted to plane–particle interactions. This geometry is of intrinsic interest to AFM
when studying extended samples, and for the interpretation of calibration procedures.

The paper is organized as follows. In section 2, we derive the central outcome of this paper,
namely a relationship between generic plane–plane interaction energy, and its corresponding
plane–sphere force. Then we apply that relationship to obtain closed-form sphere–plane
interactions for the van der Waals (section 3) and for the electric double layer cases (section 4).
Our results are compared with previous theoretical and numerical studies. In section 5, we study
a model system based on recent experimental data and present explicit formulae for forces in
that case. In addition, we perform comparisons with numerical computations in this case. In
section 6, we obtain the next order correction to the Derjaguin approximation. Compared with
Derjaguin’s, this expression still provides a simple tool for estimation of interactions, while
removing the restriction that the radius of curvature must be infinitely large. In section 7 we
present our conclusions.

2. Theory

We begin from the interaction energy U , between a flat plane and a spherical particle as
calculated using the SEI formalism [10, 11]:

U(D) = 2π
∫ a

0

[
E

(
D + a − a

√
1 −

(
r

a

)2 )
− E

(
D + a + a

√
1 −

(
r

a

)2 )]
r dr, (1)
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where E(h) is the interaction energy between two infinite planes, separated a distance h, D is
the distance of closest approach between the sphere and the plane, and a is the radius of the
sphere.

The force between the sphere and the plane is then obtained from

F(D) = −dU (D)

dD
(2)

or, explicitly using (1),

F(D) = −
∫ a

0

∂E
(

D + a − a
√

1 − (
r
a

)2
)

∂D
+

∫ a

0

∂E
(

D + a + a
√

1 − (
r
a

)2
)

∂D
. (3)

Both integrals in equation (3) can be condensed into a single expression

Iε(D) = ε

∫ a

0

∂

∂D
E

(
D + a − εa

√
1 −

(
r

a

)2 )
r dr (4a)

with ε = ±1, such that

F(D) = I−1(D)+ I+1(D). (4b)

Next, consider the change of variables r → θ ,

r = a sin θ, with 0 � θ � π

2
. (5)

Then,

Iε(D) = εa2
∫ π/2

0

∂

∂D
E(D + a + εa cos θ) sin θ cos θ dθ. (6)

Notice that
∂

∂θ
E(D + a + εa cos θ) = −εa sin θ

∂

∂D
E(D + a + εa cos θ). (7)

Thus, the integral in (6) can be written as

Iε(D) = −a
∫ π/2

0

∂

∂θ
E(D + a + εa cos θ) cos θ dθ. (8)

On integrating by parts,

Iε(D) = −a

{
[E(D + a + εa cos θ) cos θ ]π/20 +

∫ π/2

0
E(D + a + εa cos θ) sin θ dθ

}
. (9)

That is,

Iε(D) = a E(D + a + εa)− a
∫ π/2

0
E(D + a + εa cos θ) sin θ dθ. (10)

We now perform an additional change of variables x(θ) = D + a + εa cos θ (6), so that
equation (10) becomes

Iε(D) = a E(D + a + εa)− a
∫ D+a

D+a+εa
E(x) dx . (11)

Using (11) and (4), and substituting into (3),

F(D) = 2π

[
a E(D + 2a)+

∫ D+a

D+2a
E(x) dx + a E(D)−

∫ D+a

D
E(x) dx

]
. (12)
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That is,

F(D) = 2πa[E(D)+ E(D + 2a)] − 2π
∫ D+2a

D
E(x) dx . (13)

Equation (13) is the central result of this article. It provides an economical prescription to
evaluate the particle–surface force from knowledge of the energy-separation function between
two planes. It presents clear advantages to the direct use of equation (3), in that equation (13)
can be directly integrated analytically for many cases of interest while equation (3) can only be
handled numerically. We show explicit applications in the remainder of the paper.

3. Van der Waals interaction

The van der Waals case has been solved a long time ago [12], and we only report it here as a
validation of our formula, equation (13). The plane–plane van der Waals interaction is given
by [13]

E(h) = − AH

12πh2
, (14)

where AH is the effective Hamaker constant.
Substituting equation (14) into (13) provides

F(D) = − AH

6

[
a

D2
+ a

(D + 2a)2
+ 1

D + 2a
− 1

D

]
. (15)

This force comes, via equation (2), from the potential

U(D) = − AH

6

[
a

D
+ a

D + 2a
+ ln

(
D

D + 2a

)]
, (16)

which is in agreement with the usual Hamaker expression.

4. Electric double layer interaction

In this section we use equation (13) in conjunction with published expressions for the
electric double layer plane–plane interaction in two cases: (1) the linear superposition
approximation [14] and (2) the constant surface potential [15].

In the linear superposition approximation the energy per unit area between two infinite
planes is

E(h) = 32ε0εrκ tanh

(
zeψ1

4kT

)
tanh

(
zeψ2

4kT

)(
kT

ze

)2

e−κh, (17)

where ε0 is the vacuum permittivity, e is the elementary charge, εr the permittivity of the
electrolyte, z is the valence in a symmetrical electrolyte, κ is the inverse Debye length, ψ1 and
ψ2 are the electrostatic potentials at each plane, k is Boltzmann constant, and T the absolute
temperature.

Application of equation (13) in this case yields

F(D) = 2πa

[
32ε0εrκ tanh

(
zeψ1

4kT

)
tanh

(
zeψ2

4kT

)(
kT

ze

)2]

×
[(

1 − 1

κa

)
+

(
1 + 1

κa

)
e−2κa

]
e−κD . (18)

The Derjaguin approximation is recovered correctly by letting κa → +∞.
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An additional integration on D provides the particle–plane interaction energy,

U(D) = 2πa2

[
32ε0εrκ tanh

(
zeψ1

4kT

)
tanh

(
zeψ2

4kT

)(
kT

ze

)2]

×
[(

1

κa
− 1

(κa)2

)
+

(
1

κa
+ 1

(κa)2

)
e−2κa

]
e−κD . (19)

In the constant surface potential case, the plane–plane interaction energy is

E(h) = κε0εr

2

(
ψ2

1 + ψ2
2

)[
1 − 1

tanh(κh)
+ 2ψ1ψ2

ψ2
1 + ψ2

2

1

sinh(κh)

]
. (20)

Substituting this particular form in equation (13) renders

F(D) = πε0εr(ψ
2
1 + ψ2

2 )κa

{
1

tanh(κD + 2κa)
− 1

tanh(κD)
+ 1

κa
log

(
sinh(κD + 2κa)

sinh(κD)

)

+ 2ψ1ψ2

ψ2
1 + ψ2

2

[
1

sinh(κD + 2κa)
+ 1

sinh(κD)
− 1

κa
log

(
tanh

(
κD
2 + κa

)
tanh

(
κD
2

)
)]}

(21)

which, again, provides the appropriate Derjaguin limit when κa → +∞.
We now integrate equation (21) to obtain an explicit expression for the particle–plane

interaction energy,

U(D) = πε0εr(ψ
2
1 + ψ2

2 )a

{
2ψ1ψ2

ψ2
1 + ψ2

2

[
− log

(
tanh

(
κD
2 + κa

)
tanh

(
κD
2

)
)

+ 2κa + κD

κa
log

(
1 + e−κD−2κa

1 − e−κD−2κa

)
+ 2κa + κD

κa
log

(
tanh

(
κD

2
+ κa

))

+ Li2(e−κD−2κa)− Li2(−e−κD−2κa)

κa

]

− 2ψ1ψ2

ψ2
1 + ψ2

2

[
κD

κa
log

(
1 + e−κD

1 − e−κD

)
+ κD

κa
log

(
tanh

(
κD

2

))

+ Li2(e−κD)− Li2(−e−κD)

κa

]

+ log

(
sinh(κD + 2κa)

sinh(κD)

)
− κD

2κa
[κD + 2 log(1 − e−2κD)

− 2 log(sinh(κD))] + 1

2κa
Li2(e

−2κD)

+ κD + 2κa

2κa
[κD + 2κa + 2 log(1 − e−2κD−4κa)

− 2 log(sinh(κD + 2κa))] − 1

2κa
Li2(e

−2κD−4κa)

}
(22)

where Li is the logarithm integral [16] function.
To the author’s knowledge this is the only instance in which analytical forms for the

potential U(D), and force F(D), have been published in the literature. The lack of such
expressions rests on the difficulty of integrating equation (2) directly.

In figure 1 we plot the interaction energies for the linear superposition approximation and
the constant surface potential.
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Figure 1. Plane–particle interaction energies for the linear superposition approximation (dashed)
and the constant surface potential (solid). For comparison, the thin lines correspond to the Derjaguin
approximation.

Figure 2. AFM tip–surface force curve for experimental parameters D0 = 1 nm, a = 7 nm,
B = 10−72 J m6, εr = 78.5, 1/κ = 3 nm. Line A corresponds to σ1σ2 = −20 pC2 nm−2, and line
B to σ1σ2 = 20 pC2 nm−2. The dashed thick lines are those of this work and the thin continuous
lines are those from numerical integration in [17].

We compare these plots with those obtained by numerical integration [10] and find perfect
agreement to the extent that the corresponding curves are so close that no visual difference can
be detected when plotted in figure 2.

In addition we show, in figure 1, curves corresponding to Derjaguin approximation for
κa = 10, that is for large sphere radius. For the cases κa = 1 and 0.3, the disagreement is
much beyond 50%.

5. Analysis of AFM experiments

Forces between an AFM tip and a plane in aqueous solutions have been investigated as a
function of pH and ionic concentration [17]. Given that the tip, at its closest approach to
the surface, appears spherical, it is reasonable to conjecture that the tip–plane forces can be
derived from equation (13). This is purposively so in colloid probe microscopy, in which a
colloidal sphere is attached at the end of the tip. Thus, in this section, the tip plays the role of
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a large colloidal particle. In addition, once the tip–surface interaction is found, it can also be
used to gain understanding of a colloidal system, in which the colloidal particles interact with
the plane.

The plane–plane energy is [17]

E(h) = 2π

εrε0κ
σ1σ2e−κ(h−D0) + B

72π(h − D0)8
(23)

where σ1 and σ2 are the surface charge densities of plane and tip, and B and D0 are parameters,
usually determined experimentally [9]. In particular, the parameter D0 is introduced in AFM
analysis, because it is not possible to know a priori where the contact between the tip and the
sample is.

In order to compare the corresponding tip–surface force with the experimental force–
distance curve, the derivative of equation (2) with respect to distance was integrated numerically
in [17].

Given the relevance of equation (23) to AFM measurements in liquids, we now use
equation (13) to produce a closed-form expression for the force-separation,

F(D) = 2πa

[
2πσ1σ2

εrε0κ

(
e−κ(D−D0) + e−κ(D+2a−D0)

)

+ B

72π

(
1

(D − D0)8
+ 1

(D + 2a − D0)8

)]

+ 2π

[
2πσ1σ2

εrε0κ2

(
e−κ(D+2a−D0) − e−κ(D−D0)

)

+ 1

7

B

72π

(
1

(D + 2a − D0)7
− 1

(D − D0)7

)]
. (24)

Figure 2 shows two sets of curves for experimentally relevant situations. The continuous
lines were obtained by numerical integration in [17]. The dashed lines correspond to plots of
equation (24).

In addition, by having available the expression (24) for the force, we can answer theoretical
questions. For example, the zero of F(D) in equation (24) (when σ1σ2 < 0) corresponds to
an accretion region for colloidal particles near the surface. That is, if the solution contained
colloids, that region is where a large concentration of the particles would be found. Since no
zeros exist for σ1σ2 > 0, one expects a homogeneous distribution of the colloidal particles, with
the exception of a small depletion layer near the surface due to the dominant repulsion there.
This problem is of particular current relevance to understand adsorption and self-assembly of
colloidal nanoparticles on surfaces and has been studied both experimentally [18] as well as
computationally [19]. In addition, from the closed-form expressions reported in this paper we
can also evaluate the gradient of the force at equilibrium, which is related to the effective spring
constant of oscillation of particles around equilibrium. This parameter, in conjunction with the
knowledge of the viscosity of the liquid, is related to the timescales necessary for the colloidal
layer to achieve equilibrium, thus providing a useful tool for colloidal adlayer formation.

6. Generalization of Derjaguin approximation

The Derjaguin approximation has been used extensively to estimate colloidal interactions. But
its usefulness relies on our understanding of its limitations. It is thus appropriate, in the light of
equation (13), to evaluate the next order of approximation, that is, beyond Derjaguin’s.

In the Derjaguin approximation, the force for a colloidal plane–sphere system is

F(D) = 2πa E(D). (25)
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Figure 3. Percentage difference between exact force, and approximate force from equation (27). As
expected, as κa decreases, the agreement between the exact and the approximate force deteriorates.
Moreover, for κa < 2 equation (26) cannot be used in the range of interest. On the other hand,
already for κa > 6 the error is below 0.01% and thus can be of use to check trends beyond
Derjaguin’s range of applicability. For comparison, for κa = 6, the corresponding difference for
the Derjaguin approximation is about 10%.

This result is recovered from equation (13) by noticing that when a → ∞,
E(D +2a) → 0. In addition, the integral in equation (13) also becomes negligible. Indeed, the
function E(x) decreases as x becomes large. Call � the typical decay length—for example, for
the electric double layer, � ≈ 1/κ . The integral the can be estimated to be ≈�E(D). Finally,
since � � a, this last term is much smaller than the first term 2πa E(D). Thus we recover
Derjaguin’s result.

When a is large, but not infinite, we must keep all terms in equation (13): the first term
remains as before; the second term 2πa E(D + 2a) ≈ 2πa E(2a) since a � D; the third term
becomes ≈2πE(D)�. Thus,

F(D) = 2πa E(D)

{
1 − �

a
+ E(2a)

E(D)

}
. (26)

This expression is also simple and can be used for estimation purposes. We can test
the strength of this statement with a specific quantitative example. Consider the linear
superposition approximation for the electric double layer interaction. Equation (18) provides
the exact interaction force, F18(D). Using equation (17) in (26) provides the approximate force
F26(D). Then we construct the percentage relative error,

δ = 100
|F18 − F26|

F18
(27)

and plot it in figure 3.

7. Conclusions

The central result of this paper is equation (13). It relates the plane–plane energy per unit
area with the corresponding sphere–plane force. Similar relationships already exist in the
literature [10]. The advantage of our equation (13) is its practicality, in the sense that it
can be readily integrated for various cases of interest. Indeed, we were able to integrate
equation (13) to provide closed-form expressions for electric double layer interactions in the
linear superposition approximation and the constant surface potential. These expressions,
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being given in analytical form, are valuable, for input in molecular dynamics simulations, for
example. For comparison with Hamaker theory, we also evaluated van der Waals interactions
using equation (13). We then obtained an analytical expression for force–distance curves
as a function of pH and ionic concentration based on AFM experiments. Finally, we used
equation (13) to find the first order correction beyond Derjaguin approximation. This is done
in the spirit of preserving a simple form, practical for prompt estimations.

We would like to stress that the evaluation of the potential for the electrostatic double
layer was done in the past numerically. Although closed form expressions for the electrostatic
double layer potential in non-planar geometries are difficult to obtain, we have presented
expressions for the corresponding potential and forces in the sphere–plane geometry. In atomic
force microscopy, this is the relevant geometry for tip–sample interactions and a solution of
this type can be used, among other things, for calibrations procedures. For atomic force
microscopy, forces, as opposed to potentials, are the main quantities; thus the interest of
reporting expressions for force in the paper.
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